TIDES 2014

Nasal, Pulmonary, Oral, Transdermal, and Microneedle Technologies for Peptide Delivery
Peptide Delivery Outline

- Peptide Properties and Delivery
- Non-invasive Technology
- Marketed Peptides in Non-Invasive Systems
- Technologies in Development for Peptides
- Peptides / Delivery Systems in Development
Goals for Non-Invasive Delivery Systems

- Improve uptake through improved convenience, compliance, ease of use
 - Must be a simple system to be adopted by physicians and patients
- Small portion of market has needle phobia (10-25%)
 - But, most can get used to simple injections
- Must maintain safety / side effect profile
 - In some cases, can improve either or both
Non-Invasive Market Preference

Simple >> Complex
Once per day > BID >>> TID

Market Preference

Patients ~ Doctors

Injection

Oral

Nasal
Buccal
Sublingual
Transdermal
Limited Non-Invasive Product Precedents

- Pulmonary
- Oral
- Transdermal
- Sublingual / Buccal
- Nasal
- Pen Injection
- Auto-injector
- Vial Syringe

Risk vs. Reward

- Commercialized Products
- Products in Development
Properties of Peptides

- Typically water soluble > 1 mg/ml
- Stability in solution is often limited
 - Hydrolysis, deamidation in aqueous solution
- Stability as solid is good when water content is low
- Synthesis < 5000 g/mol > recombinant
- Immunogenicity and safety
 - Naturally derived peptides are typically risk reduced because safety of the endogenous molecule is well understood
 - Immunogenicity a concern for analogues and non-natural
- Half-life short for natural amino acid peptides
 - Minutes to hours
Biomolecule Delivery Constraints

<table>
<thead>
<tr>
<th>Peptides</th>
<th>Proteins</th>
<th>Antibodies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose (mg)</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>MW (kD)</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Half-life (hour)</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Peptide Delivery TIDES 2014
Typical Product Life Cycle for Peptide Therapeutics

- First drug product is usually solution for injection
 - Store in lyophilized form, or store in solution at 2-8°C
- Immediate product improvements to commercial product
 - Improve product presentation (Vial / syringe to pen/injector)
 - Predictable cost, time, high probability
- Next Generation: Sustained exposure injection technologies
 - Formulations (lipids, polymer, gels, implants)
 - Moderate cost and moderate probability
 - Covalent (PEG, Fc, Albumin, Ab binding conjugates)
 - Higher cost (NCE), risk-reduced if known target / pharmacology and follow on program
- Additional considerations: Non-invasive or minimally invasive
 - Nasal, Pulmonary, oral, microneedle, implant
 - Typically a device combination product, except most orals
 - High cost and lowest probability
Life Cycle for Peptides

Risk & Cost

Pen Injection Auto-injector
Vial Syringe

Sustained Exposure Injection
Non-Invasive

Time from First Launch
+ 5 Yrs
+ 10 Yrs

05/15/14
Non-Invasive Challenges

- Compatibility of drug, formulation, device
- Predictability of in vitro and in vivo methods
- Variability in Exposure (Cmax, AUC, Tmax)
- Overall cost of the system
 - Bioavailability, novel excipient, device, manufacturing
- Maturity of the technology
 - Phase 1 PK, or late stage phase 2/3 development
 - Scale up experience, manufacturing systems
- Regulatory experience and acceptance
Mucosal Transport of Biomolecules is Limited

- Low passive diffusion across mucosal barrier
 - Some active transport systems
- Significant permeation across pulmonary epithelial lining
 - Alveoli in deep lung show good permeability to peptides
 - Efficiency of deposition in deep lung limits bioavailability
 - Overall bioavailability typically 5 to 10% versus SC
- Permeation enhancers typical for nasal, oral, buccal, sublingual
 - Bioavailability typically < 2 to 4% versus SC
- Transdermal typically involves an active penetration or permeation
 - Penetration - microneedles, microporation (ablation)
 - Membrane disruption - iontophoresis, sonophoresis
 - Bioavailability can be significant > 20 to 40% versus SC
Peptide Products: Combination Products with Trivalent Complexity

Biology & Chemistry
- Molecule
 - Efficacy / side effects
 - Continuous or pulsatile
 - Cost per gram
 - Physicochemical properties

PK & Formulation
- Delivery System
 - Process complexity
 - Bioavailability
 - Cost per unit
 - Compatibility with molecule

Device & Handling
- Device
 - Device complexity
 - Ease of use / acceptance
 - Cost per unit
 - Formulation compatibility
Non-invasive Program Expectations

- Pulsatile exposure compared to SC injection
 - Limited absorption phase due to permeation and penetration aid
- Much lower bioavailability than SC
 - Can be a challenge to COGs and manufacturing scale
- Increased variability in exposure
 - Can be challenging for peptides with limited tolerability window
- Handling of a device 1X to 3X per day
 - Nasal, pulmonary, transdermal, microneedle
- Increased regulatory scrutiny
 - Change in route of delivery and formulation
 - Concern for change in safety profile / immogenicity
- Significant development time and cost
 - Increased drug consumption in pharmaceutical development
 - Potential for plant and equipment capital investment prior to phase 3
PK of GLP-1s

Native GLP-1: \(t_{\frac{1}{2}} \) 2 min (IV)

Liraglutide (Victoza): \(t_{\frac{1}{2}} \) 13 hrs (SC)

Exenatide (Byetta): \(t_{\frac{1}{2}} \) 1-2 hrs (SC)

J. Eng license to Amylin 1996
FDA approved 2005
Twice daily injection

Novo
FDA approved 2010
Once daily injection
DDAVP Nasal Spray and Oral Commercial Products

- DDAVP (desmopressin acetate)
 - MW 1183, anti-diuretic
 - Synthetic analogue of natural hormone arginine vasopressin
 - Multiple generic versions available

- DDAVP Nasal Spray (Sanofi, 1984)
 - 10 mcg / spray
 - Bioavailability ~10%, half-life 55 minutes

- DDAVP Tablets (Sanofi, 1995)
 - 100 to 200 mcg / tablet
 - Bioavailability 5% vs nasal, 0.2% vs Intravenous injection
Oxytocin Nasal Spray
Commercial Product

- Nasal Oxytocin
 - MW 1007, Initial milk letdown
 - FDA approval 1960 (Novartis)
 - Removed from US market in 1997 for commercial reasons
 - Still marketed in EU / ROW as Syntocinon (Novartis, Sigma-Tau)

- Development programs
 - Significant interest from several companies in CNS indications
 - Autism, Schizophrenia, anorexia, etc…
Salmon Calcitonin Nasal Spray
Commercial Product

- Nasal calcitonin
 - MW 3432, 32 amino acids
 - Post-menopausal osteoporosis
 - FDA approval 1995 (Sandoz)
 - CHMP and FDA recommend removal from market in 2012/2013, Health Canada Mandates removal in 2013

- Mean bioavailability of 2 to 3% vs IM injection
 - Range of 0.03 to 30 % in small human PK study
Insulin Oral Inhalation Commercial Product

- **Exubera (Pfizer / Nektar)**
 - MW 5807, 51 amino acids, two polypeptide chains
 - FDA approved 2006
 - Type I and II diabetes
 - Bioavailability vs SC injection ~10%
 - First inhalable insulin approved, proved that good engineering could produce similar PK profiles to SC injection
 - Pfizer pulled from market in 2007 due to poor acceptance

- **Afrezza (Mannkind)**
 - Technosphere Insulin Inhalation System
 - Under final FDA review 2014
Non-invasive Programs in Clinical Development

- **Inhaled Insulin**
 - Dance Pharmaceuticals, founded by John Patton (Nektar)
 - Based on the Aerogen device

- **Oral Insulin**
 - Biocon technology originally licensed from Nobex based on PEGylated insulin conjugates – IN-105
 - Failed to reach primary endpoint in phase 3 study
 - Oramed – phase 2 study
 - Diabetology
 - Ora-Lyn (Generex buccal spray)
 - All technologies have bioavailability << 10% vs SC injection

- **Nasal Insulin**
 - Nasulin (CPEX) failed in a phase 2 trial in 2011 and was halted
Non-invasive Programs in Clinical Development

- **Nasal Oxytocin**
 - Retrophin, other companies
 - Clinical exploration in multiple CNS indications

- **Oral Calcitonin**
 - Tarsa Therapeutics licensed Unigene Labs product
 - Completed phase 2, in phase 3 readying for submission?
 - Oral bioavailability 1 to 2% versus SC injection

- **PTH1-34 Microneedles**
 - Zosano stainless steel microneedle system (Alza Macroflux technology)
 - Radius (3M plastic microneedle system)
 - Bioavailability 20 to 40% versus SC injection

- **Exenatide Implant (minimally invasive)**
 - Intarcia titanium implant with 6 and 12 month of exenatide (Alza Duros technology)
Prospective Non-Invasive Peptide?: Consider Indication / Patients Needs First, Then Technical Feasibility in The Space

Molecule
- Efficacy / side effects
- Continuous or pulsatile
- Cost per gram
- Physicochemical properties

Delivery System
- Process complexity
- Bioavailability
- Cost per unit
- Compatibility with molecule

Device
- Device complexity
- Ease of use / acceptance
- Cost per unit
- Formulation compatibility

Biology & Chemistry

PK & Formulation

Device & Handling

Prospective Non-Invasive Peptide?:
Consider Indication / Patients Needs First,
Then Technical Feasibility in The Space