Intranasal Administration of Exenatide in Patients with Type 2 Diabetes: Pharmacokinetics, Pharmacodynamics, Safety, and Tolerability

Erich Blase, Wei Deng, Brandon Walsh, Mark Fineman, Christopher A. Rhodes

Amylin Pharmaceuticals, Inc., San Diego, CA
Presenter Disclosure Information

Erich Blase

• Stockholder: Amylin Pharmaceuticals, Inc.
• Employee: Amylin Pharmaceuticals, Inc.
Introduction

• Exenatide, an incretin mimetic, has multiple mechanisms of action that improve glucose control in patients with type 2 diabetes:
 – Enhancement of glucose-dependent insulin secretion
 – Suppression of inappropriately elevated postprandial glucagon secretion
 – Slowing of gastric emptying
 – Reduction of food intake

• Exenatide is currently administered twice daily via subcutaneous injection prior to major meals

• Intranasal delivery of exenatide
 – Non-invasive mealtime dosing
Objective

- Examine the pharmacokinetics, pharmacodynamics, safety, and tolerability of intranasal administration of exenatide in patients with type 2 diabetes using at least one OAD
Study Design

- Single-blind, dose-escalation, placebo-controlled study of intranasal administration of exenatide in subjects with type 2 diabetes
 - Single dose delivered (one to three 100-μL nasal sprays)
 - Standardized breakfast given after medication
 - Blood samples prior to and during the 8 hours following medication

<table>
<thead>
<tr>
<th>Visit</th>
<th>Screening</th>
<th>Treatment (visits occurred 2-8 days apart; 28 day maximum duration)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low Dose (n=12)</td>
<td>Screening</td>
</tr>
<tr>
<td>1</td>
<td>Screening</td>
<td>Saline IN 30 min Exen SC 5 mcg</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Placebo IN</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: IN = intranasal; SC = subcutaneous
Study Design

• Single-blind, dose-escalation, placebo-controlled study of intranasal administration of exenatide in subjects with type 2 diabetes
 – Single dose delivered (one to three 100-μL nasal sprays)
 – Standardized breakfast given after medication
 – Blood samples prior to and during the 8 hours following medication

<table>
<thead>
<tr>
<th>Visit</th>
<th>Screening</th>
<th>Treatment (visits occurred 2-8 days apart; 28 day maximum duration)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Low Dose Group (n=12)</td>
<td>Screening</td>
<td>Saline IN ↓ 30 min ↓ Exen SC 5 mcg</td>
</tr>
<tr>
<td>High Dose Group (n=8)</td>
<td>Screening</td>
<td>Saline IN ↓ 30 min ↓ Exen SC 5 mcg</td>
</tr>
</tbody>
</table>

Abbreviations: IN = intranasal; SC = subcutaneous
Demographics and Baseline Characteristics

ITT Population. Data are mean ± SD, except for sex.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>All subjects (N=20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex, male/female (%)</td>
<td>65/35</td>
</tr>
<tr>
<td>Age (y)</td>
<td>55 ± 9</td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td>93 ± 12</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>31 ± 3</td>
</tr>
<tr>
<td>A1C (%)</td>
<td>8.1 ± 1.3</td>
</tr>
<tr>
<td>FPG (mg/dL)</td>
<td>156.4 ± 34.6</td>
</tr>
<tr>
<td>Duration of diabetes (y)</td>
<td>9 ± 8</td>
</tr>
</tbody>
</table>

ITT Population. Data are mean ± SD, except for sex.
Disposition

Total Enrolled (N=20)

Low Dose Cohort
- Enrolled (N=12)
 - Intent-to-Treat (N=12)
 - Withdrew (AE) (N=1)
 - Evaluable (N=11)

High Dose Cohort
- Enrolled (N=8)
 - Intent-to-Treat (N=8)
 - Withdrew (AE) (N=2)
 - Evaluable (N=6)
Pharmacokinetic Results

Plasma Exenatide (pg/mL)

Time (min)

- 60 mcg IN
- 200 mcg IN
- 600 mcg IN
- 800 mcg IN
- 1200 mcg IN
- 1800 mcg IN

0 60 120 180 240 300 360 420 480
0 500 1000 1500 2000 2500 3000 3500
Pharmacokinetic Results

Plasma Exenatide (pg/mL) vs Time (min)

- 600 mcg IN
- 5 mcg SC
Serum Glucose

Exenatide followed by breakfast

Time (min)

Serum Glucose (mg/dL)
Serum Glucose

Exenatide followed by breakfast

Time (min)

Serum Glucose (mg/dL)

Placebo
5 mcg SC
Serum Glucose

Exenatide followed by breakfast
Serum Glucose

Exenatide followed by breakfast
Serum Glucose

Exenatide followed by breakfast

Time (min)

Serum Glucose (mg/dL)

Placebo
5 mcg SC
1800 mcg IN
1200 mcg IN
800 mcg IN
600 mcg IN
Serum Glucose

Exenatide followed by breakfast
Serum Glucose

- Placebo
- 5 mcg SC
- 1800 mcg IN
- 1200 mcg IN
- 800 mcg IN
- 600 mcg IN
- 200 mcg IN
- 60 mcg IN

Exenatide followed by breakfast.
Serum Glucose and Insulin

Serum Glucose

- Exenatide followed by breakfast

Serum Insulin

- Exenatide followed by breakfast

Exenatide

Placebo

600 mcg IN

0 30 60 90 120 150 180 210 240

Time (min)
Safety and Tolerability

• The most frequent adverse events with intranasal exenatide administration were nausea (6 patients) and vomiting (5 patients)
 – Nausea and vomiting occurred at doses ≥ 600 mcg
 – Nausea also occurred in 1 patient with placebo

• Sneezing occurred with intranasal administration of exenatide (2 patients) and placebo (1 patient)

• Intranasal administration of exenatide was generally well tolerated with no serious adverse events or hypoglycemic events
Conclusion

• Intranasal administration of exenatide in patients with type 2 diabetes was well tolerated and resulted in:
 – Therapeutic plasma exenatide concentrations
 – Enhanced glucose-dependent insulin secretion
 – Improved PPG control

• These data support the further development of intranasal exenatide delivery in the range of 600 mcg as a non-invasive treatment option for patients with type 2 diabetes
Pharmacokinetic Results

AUC_{0-tlast} (pg·h/mL) vs Exenatide IN Dose (mcg)